Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic control of NOTCH1 signalling.

blue LOVTRAP HEK293T MCF7 MDA-MB-468 Signaling cascade control
bioRxiv, 28 Sep 2021 DOI: 10.1101/2021.09.27.462029 Link to full text
Abstract: The Notch signalling pathway is a crucial regulator of cell differentiation as well as tissue organisation. Dysregulation of Notch signalling has been linked to the pathogenesis of different diseases. Notch plays a key role in breast cancer progression by controlling the interaction between the tumour cells and the microenvironment as well as by increasing cell motility and invasion. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). Here, we circumvent this step by regulating Notch activity by light. To achieve this, we have engineered a membrane-bound optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures. OptoNotch allows fine-tuning ligand-independent regulation of N1ICD to understand the spatiotemporal complexity of Notch signalling.
2.

Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.

blue VVD HEK293 HeLa MDA-MB-468 mouse in vivo
Nucleic Acids Res, 15 Dec 2015 DOI: 10.1093/nar/gkv1343 Link to full text
Abstract: Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies.
Submit a new publication to our database